Posted on

Nightforce Tech Tip: Dialing or Holding for Bullet Drop

In the accompanying video, we will be demonstrating each of the methods using our Nightforce B.E.A.S.T. 5-25×56 F1 first focal plane riflescope which includes the Horus H59 reticle.  We are engaging a target at 420 yard which requires 2.2 mils of elevation adjustment for our rifle system. 


The first method is to dial your elevation adjustment. In our example, we engage a 420 yard target using 2.2 mils (mil-radians) of elevation adjustment. The shooter will dial 2.2 mils on their elevation adjustment, and hold the center of the cross hair on the center of the target. 


Alternatively, the shooter can dial their elevation adjustment to zero, and hold the 2.2 mils within the reticle.  This “hold over” will place the center of the crosshair above the target.  The 2.2 mil indication point within the reticle will be used to hold center on the target. 

Both methods perform the same function, adjusting for bullet drop, equally well but use different methods and have their own advantages.  

Holding for elevation adjustments can allow the shooter to engage a single target very quickly without having to take the time to dial the necessary elevation adjustment.  Holding over can also be a way to rapidly engage multiple targets or for taking a quick follow up shot after a miss. For example, by creating a list of elevation adjustments for each target to be engaged (dope chart), the shooter can quickly glance at the adjustment and hold over the appropriate amount within the reticle.  For a quick follow up shot after a miss, the shooter can measure the distance of the miss by utilizing the information within the reticle and can make a corresponding hold adjustment. 

In certain situations, dialing is a preferred method for making elevation adjustments.  One example is the reticle design within the riflescope and another example is when making precise wind holds.

Not all reticles are designed for this purpose and may not offer as much information within them to allow the shooter to precisely hold over for elevation (or wind) adjustments.  For example, our IHRTM reticle is an excellent hunting and dangerous game reticle and does offer hold over reference points. However, by design it has a very clean, unobstructed view yet contains less “intelligence’ or information within it versus the H59 reticle referenced in this article or other Nightforce intelligent reticles such as the MOARTM or Mil-RTM.  Therefore, dialing may be a preferred method of making precise elevation adjustments when using this style of reticle.

When holding for wind, especially at extended distances, dialing the elevation adjustment may be a preferred method.  By dialing the necessary elevation, the shooter can keep the target along the main horizontal stadia line, and hold off for the necessary wind adjustment by using the information in an intelligent reticle. 

Look for a future article which will dive deeper into fully utilizing the information within an intelligent reticle.

Turrets View all types of turrets with explanations on how to use them.

Posted on

Beyond the Glass

At most of the annual hunting and shooting shows attended by high-end manufacturers exhibiting their wares, there is a phenomenon known as “the whistler.” This refers to the old boy that wanders up to a booth, inspects one of the products on display, and inquires, “How much is one ‘o them things?”

When given the answer, his eyes widen, he purses his lips and emits a long whistle, or perhaps a “hoooooeeee,” quickly puts down the item he was admiring as if it suddenly began burning his fingers, and stealthily backs away into the crowd as if he were confronted by a rabid dog.

Whistlers are especially common these days at riflescope displays, as the cost of premium optics is reaching well into four figures. You can’t blame the old boy for a bit of sticker shock. After all, the scope company just down the aisle is offering the greatest riflescope ever invented for $129.95, fresh off the boat from China and made with the finest multicoated Coke bottle lenses. Just buy one of those, their advertising claims, and you will instantly become an accomplished sniper capable of drilling a fly at 1000 yards.

We’ve all whistled a bit, I’ll wager, when looking at the prices of top-end riflescopes. $1000, $2000, even $3000 or more is not unusual at all these days for premium optics. The problem is, from the outside, every riflescope looks about the same…a black tube with a couple of dials attached, with some glass at each end. What makes one scope require a second mortgage, while another can be purchased with little more than pocket change? Is there really that much of a difference?

The short answer is yes. The longer answer is more involved. For just like a bottle of Scotch, a computer, a fine watch, or even a human being, with riflescopes, it’s what’s inside that counts.

Certainly, the quality of the glass inside a riflescope is a major consideration. That, though, is a topic unto itself for another day. About the last thing anyone thinks about when investing in a riflescope is the hardware store of little pieces and parts inside that black tube. The truth of the matter is that those tiny screws, springs and funny-looking components are what determine if your riflescope will perform for a lifetime or two, or self-destruct at the worst possible time.

Not long ago, I had the privilege of touring the Nightforce Optics, Inc. manufacturing facility in Orofino, Idaho. I thought I knew a lot about riflescopes. I was wrong. We spent an entire afternoon going through one of their NXS riflescopes, piece by piece, comparing it to competitors’ products. I’ll never look at, or through, a riflescope in the same way again.

A modern variable-power riflescope can have over 100 individual components. The inherent quality of those parts, the precision with which they are machined, and the care with which they are assembled are the primary reasons why a really good scope carries a whistler’s price tag…and why that price is justified.

Rifles and riflescopes are not a marriage made in heaven. The tremendous recoil produced by big bore and magnum calibers is transferred directly to the scope. Your shoulder can testify to the shock they produce. Precision optical instruments require microscopic tolerances, absolutely perfect alignment and delicate components. It is not unlike strapping an impeccably made Swiss watch to a hammer and repeatedly pounding 10-penny nails. Something has to give, and it’s not going to be the hammer.

The only way that marriage is going to survive is if the riflescope is built with the best possible materials, and the best is not cheap. For example, you might have heard the term “repeatability” applied to elevation and windage adjustments. What this means is that if your riflescope is calibrated for ¼ inch adjustments, you want to be certain that one click is precisely ¼ inch the day you take it out of the box and ten years from now. You need to be confident that no matter how many elevation adjustments you’ve made over the years, that it is repeatable—exactly ¼ inch every time—whether it’s below freezing or brutally hot, after thousands of shots, after years of hard use. It also means that your shots must be repeatable…no surprises, no variation in point of impact today, tomorrow, or a decade from now.

This is not something easily accomplished by the scope maker. Metal fatigue, wear and recoil will, over time, cause the elevation and windage adjustments in an average riflescope to become sloppy. That ¼ inch becomes 3/8 inch, then a half inch, then even worse, until making an adjustment becomes a new and different experience every time. That same wear will also cause your rifle to easily stray from zero at the least provocation, with no advance notice.

Elevation and windage adjustments are essentially internal screws that move the scope’s erector tube (containing the reticle) up and down and side to side within the scope. This system is held in place, and constant pressure maintained, by two metal leaf springs. The Nightforce people showed me the type of spring common to average-quality riflescopes; it is a simple, thin piece of steel, costing a few pennies.

Then they showed me the springs used in some of their riflescopes. They are pure titanium, cut precisely to length. It spends a couple of weeks in a polishing tumbler before going into a scope, even though it already seems perfectly smooth. This spring costs several dollars. Why go to this trouble and expense? Because titanium, they explained, is the only known metal that can be compressed and held in place for years without developing fatigue or “memory.” It is virtually impervious to wear. It is tumbled to assure that there are no rough spots or burrs to interfere with perfectly smooth operation. It ensures no loss of integrity, and absolute repeatability.

The screws themselves that control the elevation adjustments in Nightforce riflescopes are made of a proprietary alloy, also resistant to wear. The threads are cut with sophisticated CNC machinery to tolerances so fine, so precise, that male and female components must be assembled by hand. No machine is sufficiently accurate. It would be much less expensive to machine coarser threads and assemble everything by automation, as is the case with many riflescopes. But, the price the customer pays is lack of repeatability out of the box, and increased susceptibility to wear.

Soft metals that wear are less costly. Hard metals that don’t are expensive. Even the tiny screws that hold a riflescope’s internal components together are critical in the longevity and reliability of your scope. Inexpensive screws with coarse threads work loose and fall victim to repeated recoil. Hearing something rattling in your riflescope is generally not a good sign.

Scope manufacturers and their ad agencies love to sing the praises of the lenses used in their products. Without a doubt, the quality of the glass and its coatings are major contributors to the resolution and clarity you see through a scope. What you don’t hear, though, is about the corners that are often cut in how a manufacturer assembles those lenses.

Just about all riflescope tubes are now made of aluminum. Aluminum and glass react to heat and cold differently, expanding and contracting at different rates. The easy, and inexpensive, way to assemble a riflescope is to simply glue the lenses to the aluminum tube. When such a scope is subjected to extremes of temperature, however, and glass and aluminum go their separate ways, it will easily throw the lenses out of alignment. If you wear glasses, and tilt them forward or backward, you have seen firsthand what this misalignment does to image quality. Changes in expansion rates can also affect your point of impact. In extreme cases, it can affect the seal between glass and tube, allowing moisture to enter, and even result in a broken lens.

So, I asked the Nightforce people, how do you avoid that? Their answer was that Nightforce lenses are bedded by hand, using a proprietary bonding agent between glass and tube that eliminates any direct glass-to-metal contact. The two materials can merrily expand and contract to their heart’s content without affecting each other in the least. Again, it’s not the cheap way. It is, though, the right way.

In recent years, the hunter has placed increasing emphasis on lightweight gear, from his boots to his pack. Riflescopes have not avoided these market trends. It is one reason the steel tube has all but vanished, replaced by aluminum. But, all aluminum is not created equal. While aluminum tubes are certainly lighter than steel, they are not as resistant to dents, damage and stresses. Inexpensive riflescopes use thin aluminum, allowing their makers to brag about how light they are. Saving a few ounces in aluminum will result in a less costly scope. The hunter will pay a huge price, though, the first time they accidentally drop their rifle.

“Unfortunately,” a Nightforce engineer told me, “the customer can’t determine the thickness or the quality of the aluminum used when they’re shopping for a scope. The only time they’ll discover it is when they bang their scope against a rock or a tree, and the scope—and their hunt—are both finished.”

Nightforce explained that they prefer to use 6061-T6 aircraft-grade aluminum alloy, machined from solid bar stock, two to three times the thickness of inexpensive tubes. Lesser scopes use extruded or formed aluminum, at a substantial savings in cost—and in strength—compared to bar stock. “It’s possible to build an extremely lightweight riflescope,” the Nightforce technicians told me. “It’s also possible to build an extremely high quality riflescope. It is not physically possible to do both.”

Even mundane things like the quality of lubricants used affect the weatherproofing, smooth operation and longevity of a riflescope. Cheap lubricants can literally freeze in bitter cold, ending any hope of making elevation or magnification adjustments. In extreme heat, they can melt away like butter in a hot pan, putting metal against metal while contaminating internal elements.

During my visit at Nightforce, we literally analyzed every single component of their riflescopes. I was shocked at the cost differential between things like cheap O-rings and good ones, alloys versus cast metals, and skilled handwork versus mass production. I think I even whistled a couple of times. I came away with one basic conclusion: a really good riflescope isn’t cheap to build. Some consumers think there must be a huge profit margin built into a $2000 riflescope, and that simply isn’t true. They’re expensive to buy because they’re expensive to make.

I was once told by a brilliant individual in South Africa, who had long ago forgotten more about hunting and shooting than I will ever know, that “only a rich man can afford a cheap riflescope.”

He was right. It is much less expensive to buy a good product once than to replace an inferior product many times over. It is beyond my means to pay for “the hunt of a lifetime” more than once in my lifetime because my riflescope caused me to miss a chance at a trophy.

Regardless of advertising claims, there are at present only three or four manufacturers in the world at committed to building the best possible riflescope, regardless of cost. Are they worth it? Probably more than in any other facet of hunting and shooting, with optics, you get what you pay for. Even if most of what you’re paying for, you can’t see.

Posted on

Knowledge is King – Applied Ballistics Seminar

In the modern age of long range shooting, long range marksmen have more information and technology available to them than ever before. Advancements in all areas of the shooting industry have brought obtaining exceptional performance at long range into reach of nearly anyone interested, thus allowing even the most experienced marksmen to extend their ranges. With all of this information being generated, getting it into the hands of shooters to expand their capabilities has become the goal. Bryan Litz started Applied Ballistics LLC when he recognized that there was a lack of information available to shooters, and that much of the information that was available was flawed or inaccurate. This led to the testing of ballistic coefficients and other ballistic characteristics that Applied Ballistics is now known for by using precise, accurate equipment while following the scientific method to obtain precise and useable data.

Since then, Applied Ballistics has been publishing this data in books and other forms of media to get this information into the hands of shooters in an easy to understand manner while still thoroughly discussing topics and presenting data. This has been very effective at helping shooters increase their range and hit probability, pushing the sport of long range shooting farther than ever before. However, we receive many questions on a daily basis about topics that are covered in, and also questions that go above and beyond, the material presented in our books.

In an effort to further the education of shooters interested in long range shooting, regardless of their experience level, Applied Ballistics has started hosting 2 day seminars aimed at getting the information shooters need into their hands. These seminars are heavily content based and follow along with the material found in the Applied Ballistics series of books. This content is presented in person in a relatively informal manner, allowing shooters to join in the discussion and ask questions while material is being presented. Material consists of everything from understanding the difference between accuracy and precision to more advanced ballistic properties such as limit cycle yaw. The goal is to engage shooters to ensure they understand the information they need to be a successful long range marksman. Whether your goal is to excel in competitive long range shooting, increase your effective range for hunting, or tactical/law enforcement applications, understanding the ballistics of your weapon system is the key to success for long range shooting.

In addition to covering material on ballistics, the implementation of this information is a key component of the curriculum as well. The Applied Ballistics Seminar is an excellent opportunity to learn how to operate AB’s computer based software as well as other devices with integrated AB software such as the Kestrel weather meters. Guest speakers from across the shooting industry are brought in to present information and give shooters the opportunity to engage them with questions that pertain to their fields of expertise. All of this combined creates an unequaled learning opportunity where shooters can absorb as much information about long range shooting as they can.